One compartment Model (ka/kel/V/F)
--
Boomer Batch File
0 wls,bayes,sim,irwls,sim+error,grid
1 Screen, diskfile
onec_bf <- output to onec_bf
1 Parameter type <- start of Dose input
Dose
100.0 Parameter value
0 Fixed,adjust,depend1,depend2
1 To <- into component 1 (GI)
0 happy or not
2 Parameter type <- start of ka input
ka
1.200 Parameter value
1 Fixed,adjust,depend1,depend2 <- fitted by the program
0.000 Lower limit
10.00 Upper limit
2 To
1 From
0 happy or not
2 Parameter type <- start of kel input
kel
0.1200 Parameter value
1 Fixed,adjust,depend1,depend2
0.000 Lower limit
1.000 Upper limit
0 To
2 From
0 happy or not
18 Parameter type <- start of V/F input
V/F
12.00 Parameter value
1 Fixed,adjust,depend1,depend2
1.000 Lower limit
100.0 Upper limit
1 To
[Drug]
2 From
0 happy or not
-1 Parameter type
2 Integration method <- Fehlberg RKF45 - default
0.000 Relative error
0.000 Absolute error
4 Fitting algorithm <- Simplex->Damping GN - good choice
0.000 PC value
Fit to Oral data - One compartment
1 Data from disk or keyboard
0.000 X value
0.000 Y value
0.2500 X value
2.100 Y value
0.5000 X value
3.600 Y value
1.000 X value
5.300 Y value
2.000 X value
6.300 Y value
3.000 X value
6.000 Y value
4.000 X value
5.500 Y value
5.000 X value
4.900 Y value
6.000 X value
4.300 Y value
9.000 X value
3.000 Y value
12.00 X value
2.100 Y value
18.00 X value
0.9900 Y value
24.00 X value
0.4700 Y value
-1.000 X value <- end of data entry
0 Accept, correct, delete, insert, of
0 Continue or save data
1 Weight type
1 AUC line number <- AUC for data set 1
0 AUC line number <- no more AUC calculations
2 Continue,save,plot,supplemental,sen
-1 wls,bayes,sim,irwls,sim+error,grid
--
When you open onec_bf.OUT you should see the information below
** FINAL OUTPUT FROM Boomer (v3.3.6a) ** 4 July 2011 --- 12:59:19 pm
Title: Fit to Oral data - One compartment
Input: From onec_bf.BAT
Output: To onec_bf.OUT
Data for [Drug] came from keyboard (or ?.BAT)
Fitting algorithm: Simplex Method
Weighting for [Drug] by 1/Cp(Obs )^2
Numerical integration method: 2) Fehlberg RKF45
with 2 de(s)
With relative error 0.1000E-03
With absolute error 0.1000E-03
PC = 0.1000E-04
** FINAL PARAMETER VALUES ***
# Name Value S.D. C.V. % Lower <-Limit-> Upper
1) ka 1.2113 0.0 10.
2) kel 0.12319 0.0 1.0
3) V/F 12.250 1.0 0.10E+03
Final WSS = 0.371923E-03 R^2 = 0.9999 Corr. Coeff = 0.9999
AIC = -88.7619 AICc = -85.7619
Log likelihood = 45.3 Schwarz Criteria = -87.3072
R^2 and R - jp1 0.9999 1.000
R^2 and R - jp2 0.9999 1.000
RMSE = 0.2044E-01 or 0.557 % RMSE
MAE = 0.1535E-01 ME = 0.1876E-02
** FINAL OUTPUT FROM Boomer (v3.3.6a) ** 4 July 2011 --- 12:59:19 pm
Title: Fit to Oral data - One compartment
Input: From onec_bf.BAT
Output: To onec_bf.OUT
Data for [Drug] came from keyboard (or ?.BAT)
Fitting algorithm: DAMPING-GAUSS/SIMPLEX
Weighting for [Drug] by 1/Cp(Obs )^2
Numerical integration method: 2) Fehlberg RKF45
with 2 de(s)
With relative error 0.1000E-03
With absolute error 0.1000E-03
DT = 0.1000E-02 PC = 0.1000E-04 Loops = 2
Damping = 1
** FINAL PARAMETER VALUES ***
# Name Value S.D. C.V. % Lower <-Limit-> Upper
1) ka 1.2113 0.777E-02 0.64 0.0 10.
2) kel 0.12319 0.312E-03 0.25 0.0 1.0
3) V/F 12.249 0.384E-01 0.31 1.0 0.10E+03
Final WSS = 0.371917E-03 R^2 = 0.9999 Corr. Coeff = 0.9999
AIC = -88.7621 AICc = -85.7621
Log likelihood = 45.3 Schwarz Criteria = -87.3074
R^2 and R - jp1 0.9999 1.000
R^2 and R - jp2 0.9999 1.000
RMSE = 0.2047E-01 or 0.557 % RMSE
MAE = 0.1533E-01 ME = 0.1959E-02
Model and Parameter Definition
# Name Value Type From To Dep Start Stop
1) Dose = 100.0 1 0 1 0 0 0
2) ka = 1.211 2 1 2 0 0 0
3) kel = 0.1232 2 2 0 0 0 0
4) V/F = 12.25 18 2 1 0 0 0
Data for [Drug] :-
DATA # Time Observed Calculated (Weight) Weighted residual
1 0.000 0.00000 0.00000 0.00000 0.00000
2 0.2500 2.10000 2.09879 0.476191 0.576746E-03
3 0.5000 3.60000 3.58557 0.277778 0.400782E-02
4 1.000 5.30000 5.32809 0.188679 -0.530018E-02
5 2.000 6.30000 6.29730 0.158730 0.429380E-03
6 3.000 6.00000 6.03993 0.166667 -0.665482E-02
7 4.000 5.50000 5.48058 0.181818 0.353180E-02
8 5.000 4.90000 4.88724 0.204082 0.260441E-02
9 6.000 4.30000 4.33325 0.232558 -0.773186E-02
10 9.000 3.00000 2.99858 0.333333 0.472466E-03
11 12.00 2.10000 2.07220 0.476191 0.132392E-01
12 18.00 0.990000 0.989499 1.01010 0.505857E-03
13 24.00 0.470000 0.472494 2.12766 -0.530716E-02
WSS data set 1 = 0.3719E-03 R^2 = 0.9999 Corr. Coeff. = 0.9999
R^2 and R - jp1 0.9999 1.000
R^2 and R - jp2 0.9999 1.000
RMSE = 0.2047E-01 or 0.557 % RMSE
MAE = 0.1533E-01 ME = 0.1959E-02
Maximum value for [Drug] is 6.3000 at 2.000
Calculation of AUC and AUMC based on trapezoidal rule
AUC and AUMC for [Drug] using Observed data
Time Concentration AUC AUMC
0.00000 ( 0.00000 )
0.250000 2.10000 0.262500 0.656250E-01
0.500000 3.60000 0.975000 0.356250
1.00000 5.30000 3.20000 2.13125
2.00000 6.30000 9.00000 11.0813
3.00000 6.00000 15.1500 26.3813
4.00000 5.50000 20.9000 46.3813
5.00000 4.90000 26.1000 69.6313
6.00000 4.30000 30.7000 94.7813
9.00000 3.00000 41.6500 173.981
12.0000 2.10000 49.3000 252.281
18.0000 0.990000 58.5700 381.341
24.0000 0.470000 62.9500 468.641
66.7651 591.171
AUC and AUMC extrapolated
from the last data point 5.7 % 20.7 %
Secondary Parameters
MRT = 8.8545
Half-life values for each first order rate constant
Parameter 2 has a half-life of ka is 0.572
Parameter 3 has a half-life of kel is 5.63
Dose/AUC (= Clearance/F)
Parameter 1 gives Dose/AUC (CL/F) of 1.50
Calculation of AUC and AUMC using Method 9 of R.D. Purves
AUC and AUMC for [Drug] using Observed data
Time Concentration AUC AUMC
0.00000 ( 0.00000 )
0.250000 2.10000
0.500000 3.60000 1.00000 0.325000
1.00000 5.30000 3.30417 2.08854
2.00000 6.30000 9.46250 11.4094
3.00000 6.00000 15.6113 26.7562
4.00000 5.50000 21.3577 46.8269
5.00000 4.90000 26.5519 70.1510
6.00000 4.30000 31.1453 95.3650
9.00000 3.00000 41.9786 175.642
12.0000 2.10000 49.5485 254.452
18.0000 0.990000 58.4050 384.001
24.0000 0.470000 62.5931 470.405
66.4082 592.934
AUC and AUMC extrapolated
from the last data point 5.7 % 20.7 %
Secondary Parameters
MRT = 8.9286
Half-life values for each first order rate constant
Parameter 2 has a half-life of ka is 0.572
Parameter 3 has a half-life of kel is 5.63
Dose/AUC (= Clearance/F)
Parameter 1 gives Dose/AUC (CL/F) of 1.51
Plots of observed (*) and calculated values (+)
versus time for [Drug] . Superimposed points (X)
6.300 Linear 6.300 Semi-log
| * | *
| + | +X
| X | X X
| | X
| X |
| X | X
| |
| X |X
| |
| | X
| X |
| |
| |
|X |X X
| |
| |
| X |
| |
| |
| |
| |
|X X |
| | X
| |
| |
| |
| X |
| |
| X |
| |
|X | X
|_____________________________________ |X____________________________________
0.000 0.4700
0 <--> 24. 0 <--> 24.
Plot of Std Wtd Residuals (X) Plot of Std Wtd Residuals (X)
versus time for [Drug] versus log(calc Cp(i)) for [Drug]
2.171 2.171
| X | X
| |
| |
| |
| |
| |
| |
| |
|X X | X X
| X | X
|X X X X | X X X X
0X==================================== 0=====================================
| |
| |
| |
| X X |X X
| X X | X X
| |
-1.268 -1.268
0.0 <--> 24. 0.47 <--> 6.3