One compartment Model (ka/kel/V/F)
-- Boomer Batch File 0 wls,bayes,sim,irwls,sim+error,grid 1 Screen, diskfile onec_bf <- output to onec_bf 1 Parameter type <- start of Dose input Dose 100.0 Parameter value 0 Fixed,adjust,depend1,depend2 1 To <- into component 1 (GI) 0 happy or not 2 Parameter type <- start of ka input ka 1.200 Parameter value 1 Fixed,adjust,depend1,depend2 <- fitted by the program 0.000 Lower limit 10.00 Upper limit 2 To 1 From 0 happy or not 2 Parameter type <- start of kel input kel 0.1200 Parameter value 1 Fixed,adjust,depend1,depend2 0.000 Lower limit 1.000 Upper limit 0 To 2 From 0 happy or not 18 Parameter type <- start of V/F input V/F 12.00 Parameter value 1 Fixed,adjust,depend1,depend2 1.000 Lower limit 100.0 Upper limit 1 To [Drug] 2 From 0 happy or not -1 Parameter type 2 Integration method <- Fehlberg RKF45 - default 0.000 Relative error 0.000 Absolute error 4 Fitting algorithm <- Simplex->Damping GN - good choice 0.000 PC value Fit to Oral data - One compartment 1 Data from disk or keyboard 0.000 X value 0.000 Y value 0.2500 X value 2.100 Y value 0.5000 X value 3.600 Y value 1.000 X value 5.300 Y value 2.000 X value 6.300 Y value 3.000 X value 6.000 Y value 4.000 X value 5.500 Y value 5.000 X value 4.900 Y value 6.000 X value 4.300 Y value 9.000 X value 3.000 Y value 12.00 X value 2.100 Y value 18.00 X value 0.9900 Y value 24.00 X value 0.4700 Y value -1.000 X value <- end of data entry 0 Accept, correct, delete, insert, of 0 Continue or save data 1 Weight type 1 AUC line number <- AUC for data set 1 0 AUC line number <- no more AUC calculations 2 Continue,save,plot,supplemental,sen -1 wls,bayes,sim,irwls,sim+error,grid --When you open onec_bf.OUT you should see the information below
** FINAL OUTPUT FROM Boomer (v3.3.6a) ** 4 July 2011 --- 12:59:19 pm Title: Fit to Oral data - One compartment Input: From onec_bf.BAT Output: To onec_bf.OUT Data for [Drug] came from keyboard (or ?.BAT) Fitting algorithm: Simplex Method Weighting for [Drug] by 1/Cp(Obs )^2 Numerical integration method: 2) Fehlberg RKF45 with 2 de(s) With relative error 0.1000E-03 With absolute error 0.1000E-03 PC = 0.1000E-04 ** FINAL PARAMETER VALUES *** # Name Value S.D. C.V. % Lower <-Limit-> Upper 1) ka 1.2113 0.0 10. 2) kel 0.12319 0.0 1.0 3) V/F 12.250 1.0 0.10E+03 Final WSS = 0.371923E-03 R^2 = 0.9999 Corr. Coeff = 0.9999 AIC = -88.7619 AICc = -85.7619 Log likelihood = 45.3 Schwarz Criteria = -87.3072 R^2 and R - jp1 0.9999 1.000 R^2 and R - jp2 0.9999 1.000 RMSE = 0.2044E-01 or 0.557 % RMSE MAE = 0.1535E-01 ME = 0.1876E-02 ** FINAL OUTPUT FROM Boomer (v3.3.6a) ** 4 July 2011 --- 12:59:19 pm Title: Fit to Oral data - One compartment Input: From onec_bf.BAT Output: To onec_bf.OUT Data for [Drug] came from keyboard (or ?.BAT) Fitting algorithm: DAMPING-GAUSS/SIMPLEX Weighting for [Drug] by 1/Cp(Obs )^2 Numerical integration method: 2) Fehlberg RKF45 with 2 de(s) With relative error 0.1000E-03 With absolute error 0.1000E-03 DT = 0.1000E-02 PC = 0.1000E-04 Loops = 2 Damping = 1 ** FINAL PARAMETER VALUES *** # Name Value S.D. C.V. % Lower <-Limit-> Upper 1) ka 1.2113 0.777E-02 0.64 0.0 10. 2) kel 0.12319 0.312E-03 0.25 0.0 1.0 3) V/F 12.249 0.384E-01 0.31 1.0 0.10E+03 Final WSS = 0.371917E-03 R^2 = 0.9999 Corr. Coeff = 0.9999 AIC = -88.7621 AICc = -85.7621 Log likelihood = 45.3 Schwarz Criteria = -87.3074 R^2 and R - jp1 0.9999 1.000 R^2 and R - jp2 0.9999 1.000 RMSE = 0.2047E-01 or 0.557 % RMSE MAE = 0.1533E-01 ME = 0.1959E-02 Model and Parameter Definition # Name Value Type From To Dep Start Stop 1) Dose = 100.0 1 0 1 0 0 0 2) ka = 1.211 2 1 2 0 0 0 3) kel = 0.1232 2 2 0 0 0 0 4) V/F = 12.25 18 2 1 0 0 0 Data for [Drug] :- DATA # Time Observed Calculated (Weight) Weighted residual 1 0.000 0.00000 0.00000 0.00000 0.00000 2 0.2500 2.10000 2.09879 0.476191 0.576746E-03 3 0.5000 3.60000 3.58557 0.277778 0.400782E-02 4 1.000 5.30000 5.32809 0.188679 -0.530018E-02 5 2.000 6.30000 6.29730 0.158730 0.429380E-03 6 3.000 6.00000 6.03993 0.166667 -0.665482E-02 7 4.000 5.50000 5.48058 0.181818 0.353180E-02 8 5.000 4.90000 4.88724 0.204082 0.260441E-02 9 6.000 4.30000 4.33325 0.232558 -0.773186E-02 10 9.000 3.00000 2.99858 0.333333 0.472466E-03 11 12.00 2.10000 2.07220 0.476191 0.132392E-01 12 18.00 0.990000 0.989499 1.01010 0.505857E-03 13 24.00 0.470000 0.472494 2.12766 -0.530716E-02 WSS data set 1 = 0.3719E-03 R^2 = 0.9999 Corr. Coeff. = 0.9999 R^2 and R - jp1 0.9999 1.000 R^2 and R - jp2 0.9999 1.000 RMSE = 0.2047E-01 or 0.557 % RMSE MAE = 0.1533E-01 ME = 0.1959E-02 Maximum value for [Drug] is 6.3000 at 2.000 Calculation of AUC and AUMC based on trapezoidal rule AUC and AUMC for [Drug] using Observed data Time Concentration AUC AUMC 0.00000 ( 0.00000 ) 0.250000 2.10000 0.262500 0.656250E-01 0.500000 3.60000 0.975000 0.356250 1.00000 5.30000 3.20000 2.13125 2.00000 6.30000 9.00000 11.0813 3.00000 6.00000 15.1500 26.3813 4.00000 5.50000 20.9000 46.3813 5.00000 4.90000 26.1000 69.6313 6.00000 4.30000 30.7000 94.7813 9.00000 3.00000 41.6500 173.981 12.0000 2.10000 49.3000 252.281 18.0000 0.990000 58.5700 381.341 24.0000 0.470000 62.9500 468.641 66.7651 591.171 AUC and AUMC extrapolated from the last data point 5.7 % 20.7 % Secondary Parameters MRT = 8.8545 Half-life values for each first order rate constant Parameter 2 has a half-life of ka is 0.572 Parameter 3 has a half-life of kel is 5.63 Dose/AUC (= Clearance/F) Parameter 1 gives Dose/AUC (CL/F) of 1.50 Calculation of AUC and AUMC using Method 9 of R.D. Purves AUC and AUMC for [Drug] using Observed data Time Concentration AUC AUMC 0.00000 ( 0.00000 ) 0.250000 2.10000 0.500000 3.60000 1.00000 0.325000 1.00000 5.30000 3.30417 2.08854 2.00000 6.30000 9.46250 11.4094 3.00000 6.00000 15.6113 26.7562 4.00000 5.50000 21.3577 46.8269 5.00000 4.90000 26.5519 70.1510 6.00000 4.30000 31.1453 95.3650 9.00000 3.00000 41.9786 175.642 12.0000 2.10000 49.5485 254.452 18.0000 0.990000 58.4050 384.001 24.0000 0.470000 62.5931 470.405 66.4082 592.934 AUC and AUMC extrapolated from the last data point 5.7 % 20.7 % Secondary Parameters MRT = 8.9286 Half-life values for each first order rate constant Parameter 2 has a half-life of ka is 0.572 Parameter 3 has a half-life of kel is 5.63 Dose/AUC (= Clearance/F) Parameter 1 gives Dose/AUC (CL/F) of 1.51 Plots of observed (*) and calculated values (+) versus time for [Drug] . Superimposed points (X) 6.300 Linear 6.300 Semi-log | * | * | + | +X | X | X X | | X | X | | X | X | | | X |X | | | | X | X | | | | | |X |X X | | | | | X | | | | | | | | | |X X | | | X | | | | | | | X | | | | X | | | |X | X |_____________________________________ |X____________________________________ 0.000 0.4700 0 <--> 24. 0 <--> 24. Plot of Std Wtd Residuals (X) Plot of Std Wtd Residuals (X) versus time for [Drug] versus log(calc Cp(i)) for [Drug] 2.171 2.171 | X | X | | | | | | | | | | | | | | |X X | X X | X | X |X X X X | X X X X 0X==================================== 0===================================== | | | | | | | X X |X X | X X | X X | | -1.268 -1.268 0.0 <--> 24. 0.47 <--> 6.3