One Compartment Model
Single Oral Dose - Fitting

One compartment Model (ka/kel/V/F)

Parameters

The file, onec_bf.BAT. Copy the lines between the markers '--' but not the marker, starting with 'Boomer Batch File'. Paste into a new text document using a simple text editor such as Text Edit (Macintosh) or Notepad (Windows) and save as plain (ascii) text as onec_bf.BAT. Start boomer and enter 1 or 3 to use a .BAT file. Enter the .BAT file name onec_bf.
--
Boomer Batch File
    0                             wls,bayes,sim,irwls,sim+error,grid 
    1                             Screen, diskfile                   
onec_bf                                                     <- output to onec_bf
    1                             Parameter type            <- start of Dose input
Dose                                                        
   100.0                          Parameter value                    
    0                             Fixed,adjust,depend1,depend2       
    1                             To                        <- into component 1 (GI)
    0                             happy or not                       
    2                             Parameter type            <- start of ka input
ka                                                          
   1.200                          Parameter value                    
    1                             Fixed,adjust,depend1,depend2   <- fitted by the program
   0.000                          Lower limit                        
   10.00                          Upper limit                        
    2                             To                                 
    1                             From                               
    0                             happy or not                       
    2                             Parameter type            <- start of kel input
kel                                                         
  0.1200                          Parameter value                    
    1                             Fixed,adjust,depend1,depend2       
   0.000                          Lower limit                        
   1.000                          Upper limit                        
    0                             To                                 
    2                             From                               
    0                             happy or not                       
   18                             Parameter type            <- start of V/F input
V/F                                                         
   12.00                          Parameter value                    
    1                             Fixed,adjust,depend1,depend2       
   1.000                          Lower limit                        
   100.0                          Upper limit                        
    1                             To                                 
[Drug]                                                      
    2                             From                               
    0                             happy or not                       
   -1                             Parameter type                     
    2                             Integration method        <- Fehlberg RKF45 - default
   0.000                          Relative error                     
   0.000                          Absolute error                     
    4                             Fitting algorithm         <- Simplex->Damping GN - good choice
   0.000                          PC value                           
Fit to Oral data - One compartment                          
    1                             Data from disk or keyboard         
   0.000                          X value                            
   0.000                          Y value                            
  0.2500                          X value                            
   2.100                          Y value                            
  0.5000                          X value                            
   3.600                          Y value                            
   1.000                          X value                            
   5.300                          Y value                            
   2.000                          X value                            
   6.300                          Y value                            
   3.000                          X value                            
   6.000                          Y value                            
   4.000                          X value                            
   5.500                          Y value                            
   5.000                          X value                            
   4.900                          Y value                            
   6.000                          X value                            
   4.300                          Y value                            
   9.000                          X value                            
   3.000                          Y value                            
   12.00                          X value                            
   2.100                          Y value                            
   18.00                          X value                            
  0.9900                          Y value                            
   24.00                          X value                            
  0.4700                          Y value                            
  -1.000                          X value                   <- end of data entry
    0                             Accept, correct, delete, insert, of
    0                             Continue or save data              
    1                             Weight type                        
    1                             AUC line number           <- AUC for data set 1
    0                             AUC line number           <- no more AUC calculations
    2                             Continue,save,plot,supplemental,sen
   -1                             wls,bayes,sim,irwls,sim+error,grid 
--
When you open onec_bf.OUT you should see the information below

 ** FINAL OUTPUT FROM Boomer (v3.3.6a) **       4 July 2011 --- 12:59:19 pm

 Title:  Fit to Oral data - One compartment                          
 Input: From onec_bf.BAT                                                     
 Output:  To onec_bf.OUT                                                     
 Data for [Drug]          came from keyboard (or ?.BAT)                                             
 Fitting algorithm: Simplex Method             
 Weighting for [Drug]          by 1/Cp(Obs )^2                                      
 Numerical integration method: 2) Fehlberg RKF45                          
          with  2 de(s)
 With relative error   0.1000E-03
 With absolute error   0.1000E-03
 PC =   0.1000E-04

                    ** FINAL PARAMETER VALUES ***

  #  Name                  Value       S.D.       C.V. %  Lower <-Limit-> Upper

  1) ka                     1.2113                            0.0       10.    
  2) kel                   0.12319                            0.0       1.0    
  3) V/F                    12.250                            1.0      0.10E+03

 Final WSS =   0.371923E-03  R^2 =   0.9999     Corr. Coeff =   0.9999    
 AIC =   -88.7619            AICc =   -85.7619    
 Log likelihood =   45.3     Schwarz Criteria =   -87.3072    
 R^2 and R - jp1     0.9999         1.000    
 R^2 and R - jp2     0.9999         1.000    
 RMSE =     0.2044E-01 or          0.557 % RMSE
 MAE  =     0.1535E-01 ME =     0.1876E-02

 ** FINAL OUTPUT FROM Boomer (v3.3.6a) **       4 July 2011 --- 12:59:19 pm

 Title:  Fit to Oral data - One compartment                          
 Input: From onec_bf.BAT                                                     
 Output:  To onec_bf.OUT                                                     
 Data for [Drug]          came from keyboard (or ?.BAT)                                             
 Fitting algorithm: DAMPING-GAUSS/SIMPLEX      
 Weighting for [Drug]          by 1/Cp(Obs )^2                                      
 Numerical integration method: 2) Fehlberg RKF45                          
          with  2 de(s)
 With relative error   0.1000E-03
 With absolute error   0.1000E-03
 DT =   0.1000E-02     PC =   0.1000E-04 Loops =     2
 Damping =     1

                    ** FINAL PARAMETER VALUES ***

  #  Name                  Value       S.D.       C.V. %  Lower <-Limit-> Upper

  1) ka                     1.2113      0.777E-02  0.64       0.0       10.    
  2) kel                   0.12319      0.312E-03  0.25       0.0       1.0    
  3) V/F                    12.249      0.384E-01  0.31       1.0      0.10E+03

 Final WSS =   0.371917E-03  R^2 =   0.9999     Corr. Coeff =   0.9999    
 AIC =   -88.7621            AICc =   -85.7621    
 Log likelihood =   45.3     Schwarz Criteria =   -87.3074    
 R^2 and R - jp1     0.9999         1.000    
 R^2 and R - jp2     0.9999         1.000    
 RMSE =     0.2047E-01 or          0.557 % RMSE
 MAE  =     0.1533E-01 ME =     0.1959E-02

 Model and Parameter Definition

  #  Name                    Value       Type From To     Dep  Start Stop

  1) Dose                =   100.0        1    0    1       0    0    0
  2) ka                  =   1.211        2    1    2       0    0    0
  3) kel                 =  0.1232        2    2    0       0    0    0
  4) V/F                 =   12.25       18    2    1       0    0    0

 Data for [Drug]          :-

 DATA #   Time       Observed      Calculated    (Weight)  Weighted residual

     1    0.000       0.00000       0.00000       0.00000       0.00000    
     2   0.2500       2.10000       2.09879      0.476191      0.576746E-03
     3   0.5000       3.60000       3.58557      0.277778      0.400782E-02
     4    1.000       5.30000       5.32809      0.188679     -0.530018E-02
     5    2.000       6.30000       6.29730      0.158730      0.429380E-03
     6    3.000       6.00000       6.03993      0.166667     -0.665482E-02
     7    4.000       5.50000       5.48058      0.181818      0.353180E-02
     8    5.000       4.90000       4.88724      0.204082      0.260441E-02
     9    6.000       4.30000       4.33325      0.232558     -0.773186E-02
    10    9.000       3.00000       2.99858      0.333333      0.472466E-03
    11    12.00       2.10000       2.07220      0.476191      0.132392E-01
    12    18.00      0.990000      0.989499       1.01010      0.505857E-03
    13    24.00      0.470000      0.472494       2.12766     -0.530716E-02

 WSS data set  1 =   0.3719E-03 R^2 =   0.9999     Corr. Coeff. =   0.9999    
 R^2 and R - jp1     0.9999         1.000    
 R^2 and R - jp2     0.9999         1.000    
 RMSE =     0.2047E-01 or          0.557 % RMSE
 MAE  =     0.1533E-01 ME =     0.1959E-02

 Maximum value for [Drug]          is      6.3000     at       2.000    

 Calculation of AUC and AUMC based on trapezoidal rule

 AUC and AUMC for [Drug]          using Observed data

       Time         Concentration      AUC             AUMC

      0.00000    (     0.00000    )
     0.250000          2.10000        0.262500        0.656250E-01
     0.500000          3.60000        0.975000        0.356250    
      1.00000          5.30000         3.20000         2.13125    
      2.00000          6.30000         9.00000         11.0813    
      3.00000          6.00000         15.1500         26.3813    
      4.00000          5.50000         20.9000         46.3813    
      5.00000          4.90000         26.1000         69.6313    
      6.00000          4.30000         30.7000         94.7813    
      9.00000          3.00000         41.6500         173.981    
      12.0000          2.10000         49.3000         252.281    
      18.0000         0.990000         58.5700         381.341    
      24.0000         0.470000         62.9500         468.641    
                                       66.7651         591.171    
 AUC and AUMC extrapolated
      from the last data point           5.7 %          20.7 %

 Secondary Parameters

 MRT =      8.8545    

 Half-life values for each first order rate constant

   Parameter   2 has a half-life of ka is      0.572    
   Parameter   3 has a half-life of kel is       5.63    

 Dose/AUC (= Clearance/F)

   Parameter   1 gives Dose/AUC (CL/F) of       1.50    

 Calculation of AUC and AUMC using Method 9 of R.D. Purves

 AUC and AUMC for [Drug]          using Observed data

       Time         Concentration      AUC             AUMC

      0.00000    (     0.00000    )
     0.250000          2.10000    
     0.500000          3.60000         1.00000        0.325000    
      1.00000          5.30000         3.30417         2.08854    
      2.00000          6.30000         9.46250         11.4094    
      3.00000          6.00000         15.6113         26.7562    
      4.00000          5.50000         21.3577         46.8269    
      5.00000          4.90000         26.5519         70.1510    
      6.00000          4.30000         31.1453         95.3650    
      9.00000          3.00000         41.9786         175.642    
      12.0000          2.10000         49.5485         254.452    
      18.0000         0.990000         58.4050         384.001    
      24.0000         0.470000         62.5931         470.405    
                                       66.4082         592.934    
 AUC and AUMC extrapolated
      from the last data point           5.7 %          20.7 %

 Secondary Parameters

 MRT =      8.9286    

 Half-life values for each first order rate constant

   Parameter   2 has a half-life of ka is      0.572    
   Parameter   3 has a half-life of kel is       5.63    

 Dose/AUC (= Clearance/F)

   Parameter   1 gives Dose/AUC (CL/F) of       1.51    

      Plots of observed (*) and calculated values (+)
           versus time for [Drug]         . Superimposed points (X)

    6.300      Linear                      6.300      Semi-log
 |   *                                   |   *                                 
 |   +                                   |   +X                                
 |    X                                  | X    X                              
 |                                       |       X                             
 |      X                                |                                     
 | X                                     |         X                           
 |                                       |                                     
 |       X                               |X                                    
 |                                       |                                     
 |                                       |             X                       
 |         X                             |                                     
 |                                       |                                     
 |                                       |                                     
 |X                                      |X                 X                  
 |                                       |                                     
 |                                       |                                     
 |             X                         |                                     
 |                                       |                                     
 |                                       |                                     
 |                                       |                                     
 |                                       |                                     
 |X                 X                    |                                     
 |                                       |                           X         
 |                                       |                                     
 |                                       |                                     
 |                                       |                                     
 |                           X           |                                     
 |                                       |                                     
 |                                    X  |                                     
 |                                       |                                     
 |X                                      |                                    X
 |_____________________________________  |X____________________________________
    0.000                                 0.4700    
 0              <-->             24.     0              <-->             24.    
 Plot of Std Wtd Residuals (X)         Plot of Std Wtd  Residuals (X)
   versus time for [Drug]                versus log(calc Cp(i)) for [Drug]         

    2.171                                  2.171    
 |                  X                    |                    X                
 |                                       |                                     
 |                                       |                                     
 |                                       |                                     
 |                                       |                                     
 |                                       |                                     
 |                                       |                                     
 |                                       |                                     
 |X     X                                |                            X     X  
 |       X                               |                                X    
 |X  X         X             X           |          X         X    X          X
 0X====================================  0=====================================
 |                                       |                                     
 |                                       |                                     
 |                                       |                                     
 | X                                  X  |X                                X   
 |    X    X                             |                              X    X 
 |                                       |                                     
   -1.268                                 -1.268    
      0.0       <-->             24.         0.47       <-->             6.3